iPower Technologies Arrests Hidden Malware from Body Cameras with SonicWall Firewalls

Note: This is a guest blog by Jarrett Pavao CEO iPower Technologies Inc., a Premier Partner for SonicWall Security, in South Florida.

Every day viruses, malware and trojans infect IT infrastructure through a growing number of mobile devices. With the growth of Internet of Things (IoT), this threat is rapidly increasing. We are faced with viruses potentially infiltrating almost every connected device – even brand-new law enforcement body cameras.

That’s right, even the people sworn to protect are exposed to these threats. Here at iPower Technologies, we never ceased to be amazed at the lengths that the bad guys will go to break into networks. That’s why it’s important that organizations have comprehensive network security that protects their associates whether they are working in the field, at home or in the office. As more of our everyday devices become “smart” and “connected”, they bring great convenience to our private and professional lives, but also provide an access point to infect entire networks and wreak havoc. This potential threat may even come from new equipment straight out of the box.

As the CEO of iPower Technologies, my team based in Boca Raton recently discovered malware on the body cameras used by one of our law enforcement clients. As a SonicWall Security Premium Partner, we follow strict protocols and we regularly audit and scan our clients’ IT infrastructure and endpoint devices, including body cameras used by our law enforcement customers. With SonicWall next-generation firewalls, we were able to detect the virus before it infected the entire network and potentially put critical data at risk. These cameras leverage geolocation/GPS capabilities, meaning that the malware could be used to track law enforcement locations.

Discovery: Conficker Worm

We discovered the malware during testing of body camera equipment for one of our law-enforcement clients. iPower engineers connected the USB camera to one of our computers. When he did that, multiple security systems on our test environment were alerted to a new threat. It turned out to be a variant of the pervasive Conficker worm and we immediately quarantined it. A second camera was connected to a virtual lab PC with no antivirus. The SonicWall next-generation firewall immediately notified iPower of the virus’ attempt to spread on the LAN and blocked the virus’ from communicating with command-and-control servers on the public internet.

Prevention

Like body armor that peace officers wear, taking precautions and preventive measures is the best defense to stopping and limiting damage from attacks. Fortunately for our clients, my iPower team has the expertise to recognize active threats along with the support of the  SonicWall Threat Research team to prevent successful attacks. In this specific case, the threat was stopped before it could do any damage and an alert for the Confiker worm was issued.

Any network with a properly deployed  SonicWall next-gen firewall would have contained the attack to a local device, such as the USB port, and not to the entire network.

Sonicwall Next Generation firewalls have multiple security features including the ability to inspect encrypted traffic, and leverage deep packet inspection (DPI) technology. See the diagram below for an example of how to prevent a virus or worm like Conficker from spreading from a PC to your servers:

Examine Smart Devices before Deploying

It’s a matter of policy for us at iPower to test all equipment before we install on a client’s network. If you don’t have a test environment – or have access to one – I strongly suggest that you make the investment. It can pay for itself in preventing embarrassing events at the client site, as well as increase internal staff knowledge that can then be applied in the real world. So do test every device you plan to install or connect to your client’s network.

Make that sure testing is a matter of policy by having a strict written policy regarding the implementation of any new hardware or software. Test any new systems being added to your corporate network in a sandbox environment prior to deployment. We don’t know for sure how the malware got onto the body cameras. It could have happened in any number of the manufacture, assembly and – ironically – QA testing stages. I think the most likely reason is due to lack of manufacture controls and outsourced equipment production. It seems innocuous enough. It’s just a camera, but the potential of the worm could have devastating, even tragic, ramifications if it had been able to gain remote code execution inside a network. Attackers could then harvest police database for Personal Identifiable Information (PII). This can be used to forge fake identities, etc.

This threat is real and growing. When you extrapolate this threat out to common smart devices, such as connected refrigerators and thermostats and the general lack of security knowledge in the home and SMB markets, you have a potentially massive challenge. So again, any device that will be placed on the same network as servers, databases, or could potentially access a corporate network need to be checked out and properly aligned with security best practices.The best way to do this is careful network design, including intra-VLAN inspection on SonicWall next-generation firewalls is a great way to protect critical infrastructure from high risk PCs and IoT devices.

Guest Author
0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply